The unified framework of some proximal-based decomposition methods for monotone variational inequalities with separable structure

نویسندگان

  • Bingsheng He
  • Xiaoming Yuan
چکیده

Some existing decomposition methods for solving a class of variational inequalities (VI) with separable structures are closely related to the classical proximal point algorithm, as their decomposed sub-VIs are regularized by proximal terms. Differing in whether the generated sub-VIs are suitable for parallel computation, these proximal-based methods can be categorized into the parallel decomposition methods and alternating decomposition methods. This paper generalizes these methods and thus presents the unified framework of proximal-based decomposition methods for solving this class of VIs, in both exact and inexact versions. Then, for various special cases of the unified framework, we analyze the respective strategies for fulfilling a condition that ensures the convergence, which are realized by determining appropriate proximal parameters. Moreover, some concrete numerical algorithms for solving this class of VIs are derived. In particular, the inexact version of the unified framework gives rise to some implementable algorithms that allow the involved sub-VIs to be solved under those favorable criteria that are well-developed in the literature of the proximal point algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximal-like contraction methods for monotone variational inequalities in a unified framework1

Approximate proximal point algorithms (abbreviated as APPAs) are classical approaches for convex optimization problems and monotone variational inequalities. To solve the subproblems of these algorithms, the projection method takes the iteration in form of uk+1 = PΩ[u − αkd]. Interestingly, many of them can be paired such that ũk = PΩ[u − βkF (vk)] = PΩ[ũ − (d2 − Gd1)], where inf{βk} > 0 and G ...

متن کامل

An inexact proximal algorithm for variational inequalities

This paper presents a new inexact proximal method for solving monotone variational inequality problems with a given separable structure. The resulting method combines the recent proximal distances theory introduced by Auslender and Teboulle (2006) with a decomposition method given by Chen and Teboulle that was proposed to solve convex optimization problems. This method extends and generalizes p...

متن کامل

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

Proximal-like contraction methods for monotone variational inequalities in a unified framework II: general methods and numerical experiments

Approximate proximal point algorithms (abbreviated as APPAs) are classical approaches for convex optimization problems and monotone variational inequalities. To solve the subproblems of these algorithms, various existing APPAs must satisfy a basic equation which offers a pair of geminate directions. Furthermore, most of APPAs adopt one of the geminate directions and take the unit step size. In ...

متن کامل

Decomposition Techniques for Bilinear Saddle Point Problems and Variational Inequalities with Affine Monotone Operators

The majority of First Order methods for large-scale convex-concave saddle point problems and variational inequalities with monotone operators are proximal algorithms which at every iteration need to minimize over problem’s domain X the sum of a linear form and a strongly convex function. To make such an algorithm practical, X should be proximal-friendly – admit a strongly convex function with e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010